eo_logo
 
Product added to cart
TECHSPEC® components are designed, specified, or manufactured by Edmund Optics. TECHSPEC®組件由愛特蒙特光學設計、指定或製造。進一步瞭解

20.0mm Dia. x -100 FL, YAG-BBAR, Plano-Concave Lens

×
Stock #21-335 5-7 Days
×
Quantity Selector - Use the plus and minus buttons to adjust the quantity. +
NT$1,698
Qty 1-9
NT$1,698
Qty 10+
NT$1,523
Volume Pricing
Request Quote
下載產品資料

Product Details

Type:
Plano-Concave Lens

Physical & Mechanical Properties

Diameter (mm):
20.00 +0.0/-0.025
Bevel:
Protective bevel as needed
Center Thickness CT (mm):
3.50 ±0.10
Centering (arcmin):
<1
Clear Aperture CA (mm):
19.00
Edge Thickness ET (mm):
4.42

Optical Properties

Effective Focal Length EFL (mm):
-100.00
Substrate: Many glass manufacturers offer the same material characteristics under different trade names. Learn More
f/#:
4.00
Numerical Aperture NA:
0.13
Coating:
YAG-BBAR (500-1100nm)
Wavelength Range (nm):
500 - 1100
Back Focal Length BFL (mm):
-102.88
Coating Specification:
Rabs <0.25% @ 532nm
Rabs <0.25% @ 1064nm
Ravg <1.0% @ 500 - 1100nm
Focal Length Specification Wavelength (nm):
587.6
Focal Length Tolerance (%):
±1
Radius R1 (mm):
-51.68
Surface Quality:
40-20
Damage Threshold, By Design: Damage threshold for optical components varies by substrate material and coating. Click here to learn more about this specification.
5 J/cm2 @ 532nm, 10ns
Power (P-V) @ 632.8nm:
1.5λ
Irregularity (P-V) @ 632.8nm:
λ/4

Regulatory Compliance

RoHS 2015:
Certificate of Conformance:
Reach 235:

產品系列說明

  • 用於光束擴展或光投射應用的負焦距透鏡
  • 在 532nm 和 1064nm 波長下優化 R<0.25%
  • 具抗反射鍍膜,在 500-1100nm 範圍內每個表面可提供 <1.0% 的反射率
  • 另有多種鍍膜選項:無鍍膜MgF2VIS 0°VIS-NIRNIR INIR II 以及 1064nm V 型鍍膜

TECHSPEC® YAG-BBAR 鍍膜平凹(PCV)透鏡由平面和內曲面組成。這種透鏡的形狀因數產生了負的焦距。平凹透鏡(PCV)通常用於包括圖像縮小、光束擴展和望遠鏡在內的各種應用。TECHSPEC® YAG-BBAR 鍍膜平凹透鏡在常見的 Nd:YAG 雷射波長 532nm 和 1064nm 處的反射小於 0.25 %。這些透鏡另外也提供未鍍膜版本 或是 VIS-EXTMgF2, VIS 0o, VIS-NIRNIR I, 還有 NIR II 抗反射膜選項

技術資訊

N-BK7

Typical transmission of a 3mm thick, uncoated N-BK7 window across the UV - NIR spectra.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with MgF2 (400-700nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Ravg ≤ 1.75% @ 400 - 700nm (N-BK7)

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with VIS-EXT (350-700nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Ravg ≤ 0.5% @ 350 - 700nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with VIS-NIR (400-1000nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Rabs ≤ 0.25% @ 880nm
Ravg ≤ 1.25% @ 400 - 870nm
Ravg ≤ 1.25% @ 890 - 1000nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with VIS 0° (425-675nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Ravg ≤ 0.4% @ 425 - 675nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with YAG-BBAR (500-1100nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Rabs ≤ 0.25% @ 532nm
Rabs ≤ 0.25% @ 1064nm
Ravg ≤ 1.0% @ 500 - 1100nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with NIR I (600 - 1050nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Ravg ≤ 0.5% @ 600 - 1050nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with NIR II (750 - 1550nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Rabs ≤ 1.5% @ 750 - 800nm
Rabs ≤ 1.0% @ 800 - 1550nm
Ravg ≤ 0.7% @ 750 - 1550nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Filter

Lens Geometry Performance Comparison

This comparison of the performance of aspheric, achromatic, and spherical PCX lenses in different situations reveals the ideal use cases for each type of lens.

現在查看

高斯光束傳播

假設許多雷射具有高斯分佈,了解高斯光束傳播對於預測雷射的實際性能至關重要。

現在查看

瞭解及指定雷射元件的LDT

雷射誘導損傷閾值 (LIDT) 或雷射損傷閾值 (LDT) 對於選擇或指定雷射光學器件至關重要。在愛特蒙特光學了解更多!

現在查看

瞭解光學規格

您想更了解光學規格的重要性嗎?在愛特蒙特光學了解不同類型的規格及其對您系統的影響。

現在查看

抗反射 (AR) 鍍膜

抗反射 (AR) 鍍膜應用於光學元件,以提高吞吐量並減少背反射造成的傷害。

現在查看

光學鍍膜簡介

您是否正在尋找有關光學鍍膜的更多資訊?在愛特蒙特光學了解更多有關光學系統中使用的鍍膜的常見、定制和優點的資訊。

現在查看

高斯光束計算器

How to Design your own Beam Expander Using Stock Optics

Are standard beam expanders not meeting your application requirements? Learn how to design your own beam expander using stock optics at Edmund Optics.

現在查看

What are the advantages of increasing lens diameter in high-power optical systems?

Increasing the diameter of optical components reduces power or energy density in a system, reducing the likelihood of laser-induced damage in high-power...

現在查看

Center Thickness (CT)

Singlet Lens

Clear Aperture (CA)

Refraction

Free-Space Optical Communication – TRENDING IN OPTICS: EPISODE 6

Free-space optical (FSO) communications transmit information wirelessly through the air using lasers with improved bandwidth. Learn more!

現在查看

Modifying Stock Optics Tip #4: Add A Coating To A Stock Lens

Join Andrew Fisher, Manufacturing R&D Engineer at Edmund Optics, as he discusses some tips for modifying stock optical components to fit your application's needs.

現在查看

Irregularity

Radius of Curvature

愛特蒙特光學遍佈全球的製造工廠

愛特蒙特光學® (EO) 在全球的五座製造工廠,每年製造數百萬件精密光學元件和子配件。

現在查看

愛特蒙特光學的度量技術:將測量作為製造的關鍵要素

進一步瞭解愛特蒙特光學® 使用的度量技術,協助保證所有光學元件及組件的優異品質。

現在查看

Diopter

不同類型的 LDT 規格

光學器件的雷射誘導損傷閾值(LIDT)是一個受缺陷密度、測試方法和雷射波動影響的統計值。

現在查看

Development of a Robust Laser Damage Threshold Testbed

Development of US national laser damage standard: 2020 status

了解表面品質規格

光學元件的表面品質取決於其表面的散射,這在雷射光學應用中尤其重要。

現在查看

SAG Calculator

Anti-Reflection (AR) Coating

下一代球面透鏡

Traditional spherical lenses are evolving due to the increasing demands of applications. Learn about the future of spherical lenses at Edmund Optics.

現在查看

不同類型的 LDT 規格

並非所有光學元件都經過雷射誘導損傷閾值 (LIDT) 測試,且測試方法不同,導致 LIDT 規範類型不同。

現在查看

雷射系統關鍵參數

了解確保雷射應用成功必須考慮的關鍵參數。將為這些參數建立通用術語。

現在查看

測試雷射損傷閾值

測試雷射誘導損傷閾值 (LIDT) 尚未標準化,因此了解光學元件的測試方式對於預測性能至關重要。

現在查看

雷射光學度量

計量對於確保光學元件始終滿足其所需的規格至關重要,尤其是在雷射應用中。

現在查看

雷射偏振:偏振在雷射應用的重要性

了解雷射的偏振對於許多應用至關重要,因為偏振會影響反射率、聚焦光束和其他關鍵行為。

現在查看

Laser Optics Lab Trailer

The Laser Optics Lab video series discusses laser optics concepts including specifications, coating technologies, product types, and more

現在查看

Introduction to Laser Optics Lab

The Laser Optics Lab video series discusses laser optics concepts including specifications, coating technologies, product types, and more

現在查看

Laser Optics Lab:Back Reflections

Back reflections are created when some or part of your beam are reflected back to the source.

現在查看

Laser Optics Lab: Coatings

Optical coatings are composed of thin-film layers used to enhance transmission or reflection properties within an optical system.

現在查看

Laser Optics Lab:Specifications for Selecting a Laser

When determining which laser to use for your application, consider the following specifications: wavelength, coherence length, beam divergence, and Rayleigh range.

現在查看

LIGHT TALK - EPISODE 3: Laser Damage Testing with Matthew Dabney

Join our discussion around laser damage testing in the third episode of our LIGHT TALKS series.

現在查看

LIGHT TALK - EPISODE 4: Lasers & Optics with Kasia Sieluzycka and Nick Smith

Learn about trends in laser applications including increasing powers and decreasing pulse durations in this conversation with Kasia Sieluzycka and Nick Smith.

現在查看

LIGHT TALK - EPISODE 8: Laser Magic! with Angi Compatangelo

From tattoo removal to diagnosing cancer, lasers can transform our lives in countless ways. Join our conversation about laser in skin care and diagnostics.

現在查看

Advantages of Using Beam Expanders

Learn more about the advantages of using beam expanders in laser optics applications, with examples on spot size and beam size, at Edmund Optics.

現在查看

Rotating vs. Sliding Beam Expander Divergence Adjustment

Sliding focusing mechanisms for laser beam expanders cause less beam wander than rotating focusing mechanisms, but they use more complex mechanics and are typically more expensive.

現在查看

The Unintuitive Balancing Act of Beam Expander Properties to Maximize Focused Spot Intensity

Surprisingly, intentionally clipping a laser beam going through a higher magnification beam expander can be the optimal solution.

現在查看

Vega™ Laser Line Beam Expanders

The TECHSPEC® Vega™ Laser Line Beam Expanders from Edmund Optics® are divergence adjustable to compensate for input beam divergence.

現在查看

Resolving damage ambiguity and laser-induced damage threshold (LIDT) complications

The art and science of designing optics for laser-induced damage threshold

Introduction to Basic Ray Optics

An understanding of refraction and basic ray optics is a critical foundation for understanding more complicated optical concepts and technologies.

現在查看

What makes laser optics different from normal optics?

Edge-Blackening

Have a question about Edge-Blackening? Find more information on stray light, measuring BRDF, and more at Edmund Optics.

現在查看

Geometrical Optics 101: Paraxial Ray Tracing Calculations

Do you use ray tracing on a regular basis? Learn more about the calculations aspect, along with steps and software at Edmund Optics.

現在查看

Optics Application Examples

Looking for application examples? Find examples for Detector Systems, Selecting the Right Lens, and Building a Projection System at Edmund Optics.

現在查看

Understanding Optical Lens Geometries

Optical lens geometries control light in different ways. Learn about Snell's Law of Refraction, lens terminology and geometries at Edmund Optics.

現在查看

球面透鏡的精準容差

光學鏡片需要非常精確的公差。在愛特蒙特光學了解有關球面透鏡公差的更多資訊。

現在查看

Keys to Cost Effective Optical Design and Tolerancing

Are you looking for ways to make cost effective optical designs? Find more information on selecting specifications and using tolerancing schemes at Edmund Optics.

現在查看

Transmission

How do I clean my lenses?

Is it possible to find Plano-Concave (PCV) or Double Concave (DCV) lenses where the diameter is greater than the focal length?

How does reversing the orientation of a PCX lens affect the EFL and BFL in a setup?

Double-Concave (DCV) Lens

Double-Convex (DCX) Lens

Meniscus Lens

Plano-Concave (PCV) Lens

Plano-Convex (PCX) Lens

Building a Mach-Zehnder Interferometer

Learn how to assemble, align, and use a Mach-Zehnder Interferometer completely out of off-the-shelf products from Edmund Optics in this detailed guide.

現在查看

Laser

Laser Damage Threshold

Surface Quality

Free-Space Optical Communication

Free-space optical (FSO) communications wirelessly transmit data through the air using lasers. FSO promises to revolutionize broadband internet access.

現在查看

快速建立光學產品原型

Quickly Respond to Collapsing Product Lifecycles

現在查看

Polarization Directed Flat Lenses Product Review

Polarization Directed Flat Lenses, which are formed with polymerized liquid crystal thin-film, create a focal length that is dependent on polarization state.

現在查看

Can A Beam Expander be Used in Reverse?

Beam expanders can be used in reverse to decrease a laser beam's diameter, but divergence will be increased.

現在查看

Beam Expander Selection Guide

Not sure which beam expander will work best in your application? Check out EO's Beam Expander Selection Guide to easily compare each type at Edmund Optics.

現在查看

Beam Expander Testing

Shack-Hartmann wavefront sensors are used to test the transmitted wavefront error of laser beam expanders, predicting the real-world performance of the beam expander.

現在查看

雷射擴束鏡

雷射擴束鏡對於降低功率密度、最小化遠距離光束直徑以及最小化聚焦雷射光斑尺寸至關重要。

現在查看

Laser Optics Lab: Beam Expander Configurations & Designs

Laser beam expanders consist of transmissive configurations, with Galilean or Keplerian designs, and reflective configurations, which use a series of mirrors, similar to microscope designs.

現在查看

What is the best lens for focusing or collimating the output from a can-type laser diode?

Laser Beam Quality: Beam propagation and quality factors: A primer

在紅外應用中使用彎月透鏡的優勢

Meniscus lenses offer superior performance compared to plano convex lenses in IR applications. Find out the benefits of using a meniscus lens at Edmund Optics.

現在查看

I thought beam expanders increased a laser beam's size. How can that help me to get a smaller spot?

Is there any means to automatically modulate (via a computer) the waist of a Gaussian beam emerging from a lens?

Modifying Stock Optics Tip #3: Turn A Sphere Into An Asphere

Join Andrew Fisher, Manufacturing R&D Engineer at Edmund Optics, as he discusses some tips for modifying stock optical components to fit your application's needs.

現在查看

Beam Expander

Collimated Light

Sliding Focusing Mechanism

I am looking to prototype an illumination system. My objective is to use a small halogen filament bulb and end up with a beam of light. What would be the best lens or lens combination to give me this projected spot of light?

What is the difference between the effective focal length and the back focal length?

What are the benefits of aspheric lenses compared to standard singlet lenses?

Back Focal Length (BFL)

Field Curvature

Sag

常用雷射材料

了解最常用的雷射光學材料將有助於輕鬆瀏覽 EO 的多種雷射光學組件選擇。

現在查看

光束直徑對 LDT 的重要性

雷射直徑對光學元件的雷射誘導損傷 (LIDT) 影響很大,因為光束直徑直接影響雷射損傷的機率。

現在查看

光學玻璃

Choosing the right optical glass is important. Find out factors and properties on how to select the right optical glass at Edmund Optics.

現在查看

像差如何影響機器視覺鏡頭

需要幫助理解像差理論嗎?了解一些基本概念,有助於闡明您對愛特蒙特光學的理解。

現在查看

解析度與對比度限制: 艾里斑

光通過孔徑時產生的繞射圖案稱為艾里斑。了解艾里斑如何影響愛特蒙特光學的影像。

現在查看

Dielectric Coating

Ion-Beam Sputtering (IBS)

A Guide to (Not Over) Specifying Losses in Laser Optics

Overspecifying optical losses in laser systems will not further improve your performance or reliability, but it could cost you additional money and/or time.

現在查看

Beam Diameter

Beam Divergence

Beam Width

Bezel

Divergence

Gaussian Beam

Strehl Ratio

Light Sheet Microscopy

Light sheet fluorescence microscopy uses a 2D laser sheet to illuminate a thin slice of the sample and excite fluorescence, reducing phototoxicity and damage.

現在查看

What is the difference between an inked lens and a non-inked one?

If I want to design with your lenses and lens assemblies, how do I get the information that I need?

Now that I have chosen my lens, how do I mount it?

Chromatic Focal Shift

Conjugate Distance

Épaisseur de bord

Distance focale effective (EFL)

Finite/Finite Conjugate

Power

How to Determine Magnification of an Optical Lens Setup

When doing basic imaging, how do you determine the magnification an optical lens will provide?

現在查看

Understanding Collimation to Determine Optical Lens Focal Length

Collimated light occurs when light rays travel parallel to each other.

現在查看

How to Form an Image with an Optical Lens Setup

Although a common misconception, individual optical lenses do not always form an image when the object plane is placed a focal length away from the lens.

現在查看

Is it possible to directly measure absorption or scatter?

BBAR Coating

Bevel

Seamed Edge

Surface Flatness

Integration of Optical Systems

Are you looking to use integration in your next system? Find out more about integrating in both imaging and non-imaging applications at Edmund Optics.

現在查看

Stock and Custom Optics Manufacturing Capabilities

Edmund Optics is a global stock and custom optics manufacturing company with in house optical designers and on-site metrology and environmental testing.

現在查看

How do I clean my optics?

 
Sales & Expert Advice
 
or view regional numbers
Easy-to-Use
QUOTE TOOL
enter stock numbers to begin