test_cookieUsed to check if the user's browser supports cookies.
最大存储时长: 1 天类别: HTTP Cookie
rc::aThis cookie is used to distinguish between humans and bots. This is beneficial for the website, in order to make valid reports on the use of their website.
最大存储时长: 永久类别: HTML 本地存储
rc::cThis cookie is used to distinguish between humans and bots.
__cf_bm [x3]This cookie is used to distinguish between humans and bots. This is beneficial for the website, in order to make valid reports on the use of their website.
AWSALB [x2]Registers which server-cluster is serving the visitor. This is used in context with load balancing, in order to optimize user experience.
最大存储时长: 7 天类别: HTTP Cookie
AWSALBCORS [x2]Registers which server-cluster is serving the visitor. This is used in context with load balancing, in order to optimize user experience.
_conv_rThis cookie is used as a referral-cookie that stores the visitor’s profile – the cookie is overwritten when the visitor re-enters the website and new information on the visitor is collected and stored.
最大存储时长: 临时类别: HTTP Cookie
_conv_sThis cookie contains an ID string on the current session. This contains non-personal information on what subpages the visitor enters – this information is used to optimize the visitor's experience.
最大存储时长: 1 天类别: HTTP Cookie
_conv_vThis cookie is used to identify the frequency of visits and how long the visitor is on the website. The cookie is also used to determine how many and which subpages the visitor visits on a website – this information can be used by the website to optimize the domain and its subpages.
conv_randThis cookie is used by the website’s operator in context with multi-variate testing. This is a tool used to combine or change content on the website. This allows the website to find the best variation/edition of the site.
最大存储时长: 永久类别: HTML 本地存储
_conv_sptestThis cookie is used by the website’s operator in context with multi-variate testing. This is a tool used to combine or change content on the website. This allows the website to find the best variation/edition of the site.
_ga [x2]Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
最大存储时长: 25 月类别: HTTP Cookie
_ga_# [x2]Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
最大存储时长: 25 月类别: HTTP Cookie
_gcl_au [x2]Used by Google AdSense for experimenting with advertisement efficiency across websites using their services.
最大存储时长: 3 月类别: HTTP Cookie
IDE待定
最大存储时长: 400 天类别: HTTP Cookie
NIDRegisters a unique ID that identifies a returning user's device. The ID is used for targeted ads.
最大存储时长: 6 月类别: HTTP Cookie
pagead/1p-user-list/#Tracks if the user has shown interest in specific products or events across multiple websites and detects how the user navigates between sites. This is used for measurement of advertisement efforts and facilitates payment of referral-fees between websites.
Understanding Collimation to Determine Optical Lens Focal Length
Collimated light occurs when light rays travel parallel to each other. Monica Rainey, Optical Engineer, explains how to collimate a divergent light source, and how to use collimated light to determine the focal length of a simple optical lens.
Hi, I am Monica, an Optical Engineer here at Edmund Optics. Today, I want to talk about the definition of collimated light and how you can use it to determine the focal length of a lens. Collimated light occurs when light rays are travelling parallel to each other, as opposed to converging to a focus or diverging away from the center. Essentially, you can consider collimated light to be focused at infinity. To collimate a diverging light source with a lens, you can place the lens a distance away from the source, equal to the focal length of the lens. Here, we have a diverging beam of light and a positive lens at a distance equal to the focal length away. As you can see, the light spot stays about the same size at any distance away from the lens. Alternatively, if collimated light enters a lens, it focuses at a distance equal to one focal length. So, if you have a lens with an unknown focal length, you can use collimated light to determine its focal length. We can assume that light is collimated or coming from infinity, if the light source is greater than a distance equal to 10x the focal length of the lens away. An easy way to determine the approximate focal length of a lens is to use the overhead lights in a room, which are a distance much greater than 10x the focal length of common lenses. The distance from the lens to the table when the light is in focus is approximately the focal length of the lens. Another way to measure this in a lab setup is to use collimated light source like this laser. The distance between the lens and the focus spot is equal to the focal length. I hope this answers your questions about collimation and the focal length of a single lens. For more technical information, please see our other videos about focal length, linked in the text below. You can browse more of our technical application notes and videos to learn more key concepts and find answers to common questions on our website.
Please select your shipping country to view the most accurate inventory information, and to determine the correct Edmund Optics sales office for your order.
or view regional numbers
QUOTE TOOL
enter stock numbers to begin
Copyright 2023, Edmund Optics Inc., 14F., No.83, Sec. 4, Wenxin Road, Beitun District , Taichung City 406, Taiwan (R.O.C.)
California Consumer Privacy Act (CCPA): Do Not Sell My Information