test_cookieUsed to check if the user's browser supports cookies.
最大存储时长: 1 天类别: HTTP Cookie
rc::aThis cookie is used to distinguish between humans and bots. This is beneficial for the website, in order to make valid reports on the use of their website.
最大存储时长: 永久类别: HTML 本地存储
rc::cThis cookie is used to distinguish between humans and bots.
__cf_bm [x4]This cookie is used to distinguish between humans and bots. This is beneficial for the website, in order to make valid reports on the use of their website.
AWSALB [x2]Registers which server-cluster is serving the visitor. This is used in context with load balancing, in order to optimize user experience.
最大存储时长: 7 天类别: HTTP Cookie
AWSALBCORS [x2]Registers which server-cluster is serving the visitor. This is used in context with load balancing, in order to optimize user experience.
_conv_rThis cookie is used as a referral-cookie that stores the visitor’s profile – the cookie is overwritten when the visitor re-enters the website and new information on the visitor is collected and stored.
最大存储时长: 临时类别: HTTP Cookie
_conv_sThis cookie contains an ID string on the current session. This contains non-personal information on what subpages the visitor enters – this information is used to optimize the visitor's experience.
最大存储时长: 1 天类别: HTTP Cookie
_conv_vThis cookie is used to identify the frequency of visits and how long the visitor is on the website. The cookie is also used to determine how many and which subpages the visitor visits on a website – this information can be used by the website to optimize the domain and its subpages.
conv_randThis cookie is used by the website’s operator in context with multi-variate testing. This is a tool used to combine or change content on the website. This allows the website to find the best variation/edition of the site.
最大存储时长: 永久类别: HTML 本地存储
_conv_sptestThis cookie is used by the website’s operator in context with multi-variate testing. This is a tool used to combine or change content on the website. This allows the website to find the best variation/edition of the site.
_ga [x2]Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
最大存储时长: 25 月类别: HTTP Cookie
_ga_# [x3]Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
最大存储时长: 25 月类别: HTTP Cookie
_gcl_au [x2]Used by Google AdSense for experimenting with advertisement efficiency across websites using their services.
最大存储时长: 3 月类别: HTTP Cookie
IDE待定
最大存储时长: 400 天类别: HTTP Cookie
NIDRegisters a unique ID that identifies a returning user's device. The ID is used for targeted ads.
最大存储时长: 6 月类别: HTTP Cookie
pagead/1p-user-list/#Tracks if the user has shown interest in specific products or events across multiple websites and detects how the user navigates between sites. This is used for measurement of advertisement efforts and facilitates payment of referral-fees between websites.
__tld__ [x2]Used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
最大存储时长: 临时类别: HTTP Cookie
wisepops [x2]Used in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
最大存储时长: 临时类别: HTTP Cookie
wisepops_props [x2]Used in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
最大存储时长: 临时类别: HTTP Cookie
wisepops_session [x2]Used in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
最大存储时长: 临时类别: HTTP Cookie
wisepops_visitor [x2]Sets a unique ID for the visitor, that allows third party advertisers to target the visitor with relevant advertisement. This pairing service is provided by third party advertisement hubs, which facilitates real-time bidding for advertisers.
最大存储时长: 临时类别: HTTP Cookie
wisepops_visits [x2]Used in context with pop-up advertisement-content on the website. The cookie determines which ads the visitor should be shown, as well as ensuring that the same ads does not get shown more than intended.
最大存储时长: 临时类别: HTTP Cookie
wisepops_session_idSets a unique ID for the session. This allows the website to obtain data on visitor behaviour for statistical purposes.
最大存储时长: 临时类别: HTML 本地存储
wisepops_session_landing_urlStores visitors' navigation by registering landing pages - This allows the website to present relevant products and/or measure their advertisement efficiency on other websites.
最大存储时长: 临时类别: HTML 本地存储
wisepops_session_referrerCollects data on visitors' behaviour and interaction - This is used to make advertisement on the website more relevant. The cookie also allows the website to detect any referrals from other websites.
最大存储时长: 临时类别: HTML 本地存储
wisepops-pageview_idDetermines when the visitor last visited the different subpages on the website, as well as sets a timestamp for when the session started.
Although a common misconception, individual optical lenses do not always form an image when the object plane is placed a focal length away from the lens. Rather, image location is dependent on object location. Join Monica Rainey, Optical Engineer, as she explains focal length and how to form an image with three simple real-world optical lens setups.
Hi, I am Monica, an Optical Engineer here at Edmund Optics. Today, I would like to talk about the meaning of focal length of a lens and how to determine where an image will form when using a single lens. There is a common misconception that individual lenses will always form an image a focal length away from the lens. This is not necessarily true as the image location depends on the object location. For an example, we'll consider an object passing through one single positive lens and forming an image on the other side. In this setup, our object is a USAF resolution target and the lens has a 50mm focal length. If we call the distance from the object to the lens, Z, the distance from the lens to the image plane, Z prime, and the focal length of the lens, F, we can use this equation to determine where the image will form or what focal length lens we need. In this equation, n prime is the refractive index of the medium between the lens and the image plane, and n is the refractive index of the medium between the object and the lens. Typically, we are working in air, so n and n prime both equal 1. For this equation, we are assuming the lens is thin, meaning the diameter of the lens is about 10 times larger than its thickness. Also, we use a sign convention here that dictates that we write a distance measured to the left as a negative number, so Z would be negative for the case shown here. This equation governs where an image will form. You can choose any two of the variables and solve for the third when setting up your imaging system. I would like to illustrate three different scenarios for you using this object. As you can see in the first setup, if the object you are trying to image is closer to the lens than the focal length of the lens, in our case, 50mm, an image of the object will not form. In this second setup, once the lens is at least one focal length away from the object, an image will form as governed by the equation I just described. In this case, we will move the lens to be 70mm from the object, so an image will form 175mm away. You can see that as we move the lens the distance to the image also changes. The light does not always focus at one focal length away from the lens. As seen in this final setup, I am using a laser source for collimated light. Collimation means that all of the light rays are travelling parallel to each other, not converging or diverging. The image will form at a distance equal to the focal length of the lens. Once the lens is far enough away from the object, about 10 times the focal length of the lens, we can consider it to be collimated. I hope this answers some of your questions about finding the image from a single lens. You can browse more of our technical application notes and videos to learn more key concepts and find answers to common questions on our website.
Please select your shipping country to view the most accurate inventory information, and to determine the correct Edmund Optics sales office for your order.
or view regional numbers
QUOTE TOOL
enter stock numbers to begin
Copyright 2023, Edmund Optics Inc., 14F., No.83, Sec. 4, Wenxin Road, Beitun District , Taichung City 406, Taiwan (R.O.C.)
California Consumer Privacy Act (CCPA): Do Not Sell My Information