Edmund Optics 使用 cookies 来优化和增强我们网站的功能和内容。点击"确定 "以获得完整的用户体验,点击 "详细信息 "按钮可查看有关我们使用的 cookie 的其他信息。我们不会出售从营销 cookie 中获得的有关您的信息,我们仅将其用于改善您在Edmund Optics 的体验。
该提供商收集的部分数据用于个性化和衡量广告效果。
该提供商收集的部分数据用于个性化和衡量广告效果。
该提供商收集的部分数据用于个性化和衡量广告效果。
dr (mm) (Diameter of the Ring): --
t (mm) (Line Thickness of the Ring): --
β (°) (Half Fan Angle): --
$$ d_r = 2L \cdot \tan{\left[ \left( n - 1 \right) \alpha \right]} $$ |
$$ \beta = \sin^{-1}{\left( n \, \sin{\alpha} \right)} - \alpha $$ |
$$ t = \frac{1}{2} d_b $$ |
dr: | Outer diameter of the ring that the beam forms |
db: | Diameter of the beam that enters the lens |
t: | Thickness of the line that the beam forms |
β: | Half fan angle that beam forms |
L: | Length from Axicon to image formed |
n: | Refractive index of the Axicon |
α: | Axicon angle |
Axicons are conical prisms that are defined by the alpha and apex angle. As the distance from the Axicon to the image increases, the diameter of the ring increases, while the line thickness remains constant.
Given the input is a collimated beam, you can calculate the outer ring diameter and the line thickness an Axicon will produce. The half fan angle calculation will be an approximation.
or view regional numbers
QUOTE TOOL
enter stock numbers to begin
Copyright 2023, Edmund Optics Inc., 14F., No.83, Sec. 4, Wenxin Road, Beitun District , Taichung City 406, Taiwan (R.O.C.)
California Consumer Privacy Act (CCPA): Do Not Sell My Information