Edmund Optics 使用 cookies 来优化和增强我们网站的功能和内容。点击"确定 "以获得完整的用户体验,点击 "详细信息 "按钮可查看有关我们使用的 cookie 的其他信息。我们不会出售从营销 cookie 中获得的有关您的信息,我们仅将其用于改善您在Edmund Optics 的体验。
Some of the data collected by this provider is for the purposes of personalization and measuring advertising effectiveness.
Some of the data collected by this provider is for the purposes of personalization and measuring advertising effectiveness.
Some of the data collected by this provider is for the purposes of personalization and measuring advertising effectiveness.
我们不使用这种类别的 cookie
Unlike ordinary incandescent bulbs, LEDs do not have a filament that burn out. LEDs emit light when electricity runs through a semiconductor material, which, in turn, excites electrons.
Compact, energy efficient, and economical, LED illumination is a great choice for both industrial and laboratory applications. Available in different configurations, such as ring lights, backlights, domelights, or arranged in custom configurations, LEDs can be easily integrated into virtually any illumination task. A main advantage of LED illumination is the freedom to easily select white, IR, RGB, or specific wavelength outputs in a variety of different geometries. An RGB output is recommended for applications that require user adjusted color balance, while Red and IR LEDs are a great choice for monochromatic applications. LEDs are also able to be strobed and/or overdriven, which can often be an invaluable function for high speed imaging applications on assembly lines. Intensity control is also possible with certain intensity controllers and power supplies. Very long lifetimes with predictable intensity fall-off are further benefits of using LED illumination sources.
or view regional numbers
QUOTE TOOL
enter stock numbers to begin
Copyright 2023, Edmund Optics Inc., 14F., No.83, Sec. 4, Wenxin Road, Beitun District , Taichung City 406, Taiwan (R.O.C.)
California Consumer Privacy Act (CCPA): Do Not Sell My Information